Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.300
Filtrar
1.
J Neurosci Res ; 102(4): e25323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553948

RESUMO

Previously, we reported that prenatal exposure to high corticosterone induced attention-deficit hyperactivity disorder (ADHD)-like behaviors with cognitive deficits after weaning. In the present study, cellular mechanisms underlying cortisol-induced cognitive dysfunction were investigated using rat pups (Corti.Pups) born from rat mothers that were repetitively injected with corticosterone during pregnancy. In results, Corti.Pups exhibited the failure of behavioral memory formation in the Morris water maze (MWM) test and the incomplete long-term potentiation (LTP) of hippocampal CA1 neurons. Additionally, glutamatergic excitatory postsynaptic currents (EPSCs) were remarkably suppressed in Corti.Pups compared to normal rat pups. Incomplete LTP and weaker EPSCs in Corti.Pups were attributed to the delayed postsynaptic development of CA1 neurons, showing a higher expression of NR2B subunits and lower expression of PSD-95 and BDNF. These results indicated that the prenatal treatment with corticosterone to elevate cortisol level might potently downregulate the BDNF-mediated signaling critical for the synaptic development of hippocampal CA1 neurons during brain development, and subsequently, induce learning and memory impairment. Our findings suggest a possibility that the prenatal dysregulation of cortisol triggers the epigenetic pathogenesis of neurodevelopmental psychiatric disorders, such as ADHD and autism.


Assuntos
Corticosterona , Hidrocortisona , Humanos , Gravidez , Feminino , Ratos , Animais , Corticosterona/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração , Neurônios/metabolismo , Transtornos da Memória/metabolismo
2.
Brain Res ; 1831: 148848, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432261

RESUMO

Alzheimer's disease is the most common neurodegenerative disease, and its treatment is lacking. In this work, we tested Amylovis-201, a naphthalene-derived compound, as a possible therapeutic candidate for the treatment of AD. For this purpose, we performed three experiments. In the first and third experiment, animals received a bilateral administration of streptozotocin and, starting 24 h after injection, a daily dose of Amylovis-201 (orally), for 17 days or for the whole time of the experiment respectively (28 days), after which learning and memory, as well as the number of hippocampal dentate gyrus cells, were assessed. In the second experiment, healthy animals received a single dose of Amylovis-201, 10 min or 5 h after the learning section to assess whether this substance could promote specific mechanisms involved in memory trace formation. Our data show that, administration of a single dose of Amylovis-201, 10 min after the end of training, but not at 5 h, produces a prolongation in memory duration, probably because it modulates specific mechanisms involved in memory trace consolidation. Furthermore, daily administration of Amylovis-201 to animals with bilateral intracerebroventricular injection of STZ produces a reduction in the loss of the hippocampus dentate gyrus cells and an improvement in spatial memory, probably because Amylovis-201 can interact with some of the protein kinases of the insulin signaling cascade, also involved in neural plasticity, and thereby halt or reverse some of the effects of STZ. Taking to account these results, Amylovis-201 is a good candidate for the therapeutic treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Estreptozocina/farmacologia , Doenças Neurodegenerativas/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Memória Espacial , Transtornos da Memória/metabolismo , Aprendizagem em Labirinto
3.
Ageing Res Rev ; 96: 102252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442748

RESUMO

Chronic cerebral hypoperfusion (CCH) is a common mechanism of acute brain injury due to impairment of blood flow to the brain. Moreover, a prolonged lack of oxygen supply may result in cerebral infarction or global ischemia, which subsequently causes long-term memory impairment. Research on using Clitoria ternatea root extract for treating long-term memory has been studied extensively. However, the bioactive compound contributing to its neuroprotective effects remains uncertain. In the present study, we investigate the effects of clitorienolactone A (CLA) and B (CLB) from the roots of Clitoria ternatea extract on hippocampal neuroplasticity in rats induced by CCH. CLA and CLB were obtained using column chromatography. The rat model of CCH was induced using two-vessel occlusion surgery (2VO). The 2VO rats were given 10 mg/kg of CLA and CLB orally, followed by hippocampal neuroplasticity recording using in vivo electrophysiological. Rats received CLA and CLB (10 mg/kg) significantly reversed the impairment of long-term potentiation following 2VO surgery. Furthermore, we investigate the effect of CLA and CLB on the calcium channel using the calcium imaging technique. During hypoxia, CLA and CLB sustain the increase in intracellular calcium levels. We next predict the binding interactions of CLA and CLB against NMDA receptors containing GluN2A and GluN2B subunits using in silico molecular docking. Our result found that both CLA and CLB exhibited lower binding affinity against GluN2A and GluN2B subunits. Our findings demonstrated that bioactive compounds from Clitoria ternatea improved long-term memory deficits in the chronic cerebral hypoperfusion rat model via calcium uptake. Hence, CLA and CLB could be potential therapeutic tools for treating cognitive dysfunction.


Assuntos
Isquemia Encefálica , Clitoria , Ratos , Humanos , Animais , Clitoria/química , Canais de Cálcio/farmacologia , Canais de Cálcio/uso terapêutico , Potenciação de Longa Duração , Cálcio , Simulação de Acoplamento Molecular , Isquemia Encefálica/tratamento farmacológico , Hipocampo , Aprendizagem em Labirinto/fisiologia
4.
Behav Brain Res ; 465: 114941, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447760

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion in vascular dementia leads to memory and motor deficits; Physical exercise improves these aspects and promotes neuroprotection. Sexual dimorphism may significantly influence both ischemic and exercise outcomes. AIMS: The aim of this study was to investigate the effects of 2VO (Two-Vessel occlusion) and the acrobatic training on motor function, functional performance, and tissue loss in male and female rats. METHODS: Male and female rats were randomly divided into 4 groups: sham acrobatic, sham sedentary, 2VO acrobatic and 2VO sedentary. After 45 days of 2VO surgery, the animals received 4 weeks of acrobatic training. At the end, open field, beam balance and horizontal ladder tests were performed. Brain samples were taken for histological and morphological evaluation. RESULTS: Spontaneous motor activity in the open field was not affected by 2VO, on the other hand, an impairment in forelimb placement was observed after 2VO and acrobatic training prevented errors and improved hindlimb placement. Neuronal loss was found in the motor cortex and striatum after 2VO, especially in females, which was prevented by acrobatic training. CONCLUSION: Mild motor damage was found in animals after 2VO when refined movement was evaluated, probably associated to neuronal death in the motor cortex and striatum. The acrobatic exercise showed a neuroprotective effect, promoting neuronal survival and attenuating the motor deficit.


Assuntos
Isquemia Encefálica , Demência Vascular , Córtex Motor , Ratos , Animais , Masculino , Feminino , Isquemia Encefálica/patologia , Encéfalo , Isquemia , Modelos Animais de Doenças , Aprendizagem em Labirinto
5.
Sci Rep ; 14(1): 5962, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472324

RESUMO

Neuroscience heavily relies on animal welfare in laboratory rodents as it can significantly affect brain development, cognitive function and memory formation. Unfortunately, laboratory animals are often raised in artificial environments devoid of physical and social stimuli, potentially leading to biased outcomes in behavioural assays. To assess this effect, we examined the impact of social and physical cage enrichment on various forms of motor coordination. Our findings indicate that while enriched-housed animals did not exhibit faster learning in eyeblink conditioning, the peak timing of their conditioned responses was slightly, but significantly, improved. Additionally, enriched-housed animals outperformed animals that were housed in standard conditions in the accelerating rotarod and ErasmusLadder test. In contrast, we found no significant effect of enrichment on the balance beam and grip strength test. Overall, our data suggest that an enriched environment can improve motor performance and motor learning under challenging and/or novel circumstances, possibly reflecting an altered state of anxiety.


Assuntos
Meio Ambiente , Atividade Motora , Camundongos , Animais , Atividade Motora/fisiologia , Aprendizagem , Animais de Laboratório , Condicionamento Clássico , Comportamento Animal/fisiologia , Aprendizagem em Labirinto/fisiologia
6.
Mol Brain ; 17(1): 16, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475840

RESUMO

Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.


Assuntos
Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais , Deficiência Intelectual , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Camundongos , Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cognição , Aprendizagem em Labirinto , Mudança Social , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473954

RESUMO

This experimental study was designed to evaluate the effect of ulinastatin, a urinary trypsin inhibitor, on postoperative cognitive dysfunction (POCD) in rats under general anesthesia with isoflurane, on the aspect of behavior, as evaluated using a Y-maze test and focusing on microglial activity. Ulinastatin (50,000 U/mL) and normal saline (1 mL) were randomly (1:1) administered intraperitoneally to the ulinastatin and control groups, respectively, before general anesthesia. Anesthesia with isoflurane 1.5 volume% was maintained for 2 h. The Y-maze test was used to evaluate cognitive function. Neuronal damage using caspase-1 expression, the degree of inflammation through cytokine detection, and microglial activation with differentiation of the phenotypic expression were evaluated. Twelve rats were enrolled in the study and evenly allocated into the two groups, with no dropouts from the study. The Y-maze test showed similar results in the two groups before general anesthesia (63 ± 12% in the control group vs. 64 ± 12% in the ulinastatin group, p = 0.81). However, a significant difference was observed between the two groups after general anesthesia (17 ± 24% in the control group vs. 60 ± 12% in the ulinastatin group, p = 0.006). The ulinastatin group showed significantly lower expression of caspase-1. Pro-inflammatory cytokine levels were significantly lower in the ulinastatin group than in the control group. The ulinastatin group had a significantly lower microglial activation (41.74 ± 10.56% in the control group vs. 4.77 ± 0.56% in the ulinastatin, p < 0.001), with a significantly lower activation of M1 phenotypes (52.19 ± 7.83% in the control group vs. 5.58 ± 0.76% in the ulinastatin group, p < 0.001). Administering ulinastatin before general anesthesia prevented neuronal damage and cognitive decline after general anesthesia, in terms of the aspect of behavior, as evaluated by the Y-maze test. The protective effect of ulinastatin was associated with the inhibition of microglial activation, especially the M1 phenotype.


Assuntos
Disfunção Cognitiva , Glicoproteínas , Isoflurano , Complicações Cognitivas Pós-Operatórias , Ratos , Animais , Isoflurano/farmacologia , Microglia , Citocinas/farmacologia , Caspase 1 , Aprendizagem em Labirinto , Inibidores da Tripsina/farmacologia
8.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474019

RESUMO

Alzheimer's Disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss and cognitive impairment, affecting 35 million individuals worldwide. Intracerebroventricular (ICV) injection of low to moderate doses of streptozotocin (STZ) in adult male Wistar rats can reproduce classical physiopathological hallmarks of AD. This biological model is known as ICV-STZ. Most studies are focused on the description of behavioral and morphological aspects of the ICV-STZ model. However, knowledge regarding the molecular aspects of the ICV-STZ model is still incipient. Therefore, this work is a first attempt to provide a wide proteome description of the ICV-STZ model based on mass spectrometry (MS). To achieve that, samples from the pre-frontal cortex (PFC) and hippocampus (HPC) of the ICV-STZ model and control (wild-type) were used. Differential protein abundance, pathway, and network analysis were performed based on the protein identification and quantification of the samples. Our analysis revealed dysregulated biological pathways implicated in the early stages of late-onset Alzheimer's disease (LOAD), based on differentially abundant proteins (DAPs). Some of these DAPs had their mRNA expression further investigated through qRT-PCR. Our results shed light on the AD onset and demonstrate the ICV-STZ as a valid model for LOAD proteome description.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Doença de Alzheimer/metabolismo , Ratos Wistar , Estreptozocina , Proteoma , Proteômica , Modelos Animais de Doenças , Aprendizagem em Labirinto
9.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474050

RESUMO

Although many types of antioxidant supplements are available, the effect is greater if multiple types are taken simultaneously rather than one type. However, it is difficult to know which type and how much to take, as it is possible to take too many of some vitamins. As it is difficult for general consumers to make this choice, it is important to provide information based on scientific evidence. This study investigated the various effects of continuous administration of a blended supplement to aging mice. In 18-month-old C57BL/6 mice given a blended supplement ad libitum for 1 month, spatial cognition and short-term memory in the Morris water maze and Y-maze improved compared with the normal aged mice (spontaneous alternative ratio, normal aged mice, 49.5%, supplement-treated mice, 68.67%, p < 0.01). No significant differences in brain levels of secreted neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, were observed between these two groups. In treadmill durability tests before and after administration, the rate of increase in running distance after administration was significantly higher than that of the untreated group (increase rate, normal aged mice, 91.17%, supplement-treated aged mice, 111.4%, p < 0.04). However, training had no reinforcing effect, and post-mortem serum tests showed a significant decrease in aspartate aminotransferase, alanine aminotransferase, and total cholesterol values. These results suggest continuous intake of a blended supplement may improve cognitive function and suppress age-related muscle decline.


Assuntos
Memória de Curto Prazo , Vitaminas , Camundongos , Animais , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Vitaminas/farmacologia , Envelhecimento/fisiologia , Cognição , Memória Espacial/fisiologia
10.
Sci Rep ; 14(1): 5949, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467699

RESUMO

There are known individual differences in both the ability to learn the layout of novel environments and the flexibility of strategies for navigating known environments. However, it is unclear how navigational abilities are impacted by high-stress scenarios. Here we used immersive virtual reality (VR) to develop a novel behavioral paradigm to examine navigation under dynamically changing situations. We recruited 48 participants (24 female; ages 17-32) to navigate a virtual maze (7.5 m × 7.5 m). Participants learned the maze by moving along a fixed path past the maze's landmarks (paintings). Subsequently, participants experienced either a non-stress condition, or a high-stress condition tasking them with navigating the maze. In the high-stress condition, their initial path was blocked, the environment was darkened, threatening music was played, fog obstructed more distal views of the environment, and participants were given a time limit of 20 s with a countdown timer displayed at the top of their screen. On trials where the path was blocked, we found self-reported stress levels and distance traveled increased while trial completion rate decreased (as compared to non-stressed control trials). On unblocked stress trials, participants were less likely to take a shortcut and consequently navigated less efficiently compared to control trials. Participants with more trait spatial anxiety reported more stress and navigated less efficiently. Overall, our results suggest that navigational abilities change considerably under high-stress conditions.


Assuntos
Navegação Espacial , Estresse Fisiológico , Realidade Virtual , Feminino , Humanos , Individualidade , Aprendizagem em Labirinto , Masculino , Adolescente , Adulto Jovem , Adulto
11.
J Psychiatry Neurosci ; 49(2): E96-E108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490646

RESUMO

BACKGROUND: The assessment of deep brain stimulation (DBS) as a therapeutic alternative for treating Alzheimer disease (AD) is ongoing. We aimed to determine the effects of intracranial self-stimulation at the medial forebrain bundle (MFB-ICSS) on spatial memory, neurodegeneration, and serum expression of microRNAs (miRNAs) in a rat model of sporadic AD created by injection of streptozotocin. We hypothesized that MFB-ICSS would reverse the behavioural effects of streptozotocin and modulate hippocampal neuronal density and serum levels of the miRNAs. METHODS: We performed Morris water maze and light-dark transition tests. Levels of various proteins, specifically amyloid-ß precurser protein (APP), phosphorylated tau protein (pTAU), and sirtuin 1 (SIRT1), and neurodegeneration were analyzed by Western blot and Nissl staining, respectively. Serum miRNA expression was measured by reverse transcription polymerase chain reaction. RESULTS: Male rats that received streptozotocin had increased hippocampal levels of pTAU S202/T205, APP, and SIRT1 proteins; increased neurodegeneration in the CA1, dentate gyrus (DG), and dorsal tenia tecta; and worse performance in the Morris water maze task. No differences were observed in miRNAs, except for miR-181c and miR-let-7b. After MFB-ICSS, neuronal density in the CA1 and DG regions and levels of miR-181c in streptozotocin-treated and control rats were similar. Rats that received streptozotocin and underwent MFB-ICSS also showed lower levels of miR-let-7b and better spatial learning than rats that received streptozotocin without MFB-ICSS. LIMITATIONS: The reversal by MFB-ICSS of deficits induced by streptozotocin was fairly modest. CONCLUSION: Spatial memory performance, hippocampal neurodegeneration, and serum levels of miR-let-7b and miR-181c were affected by MFB-ICSS under AD-like conditions. Our results validate the MFB as a potential target for DBS and lend support to the use of specific miRNAs as promising biomarkers of the effectiveness of DBS in combatting AD-associated cognitive deficits.


Assuntos
Doença de Alzheimer , MicroRNAs , Ratos , Masculino , Animais , Ratos Wistar , Autoestimulação/fisiologia , Estreptozocina/toxicidade , Aprendizagem Espacial , Doença de Alzheimer/terapia , Sirtuína 1/farmacologia , Hipocampo , MicroRNAs/genética , Aprendizagem em Labirinto
12.
Nat Commun ; 15(1): 2475, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509099

RESUMO

Adult behavior is commonly thought to be shaped by early-life experience, although episodes experienced during infancy appear to be forgotten. Exposing male rats during infancy to discrete spatial experience we show that these rats in adulthood are significantly better at forming a spatial memory than control rats without such infantile experience. We moreover show that the adult rats' improved spatial memory capability is mainly based on memory for context information during the infantile experiences. Infantile spatial experience increased c-Fos activity at memory testing during adulthood in the prelimbic medial prefrontal cortex (mPFC), but not in the hippocampus. Inhibiting prelimbic mPFC at testing during adulthood abolished the enhancing effect of infantile spatial experience on learning. Adult spatial memory capability only benefitted from spatial experience occurring during the sensitive period of infancy, but not when occurring later during childhood, and when sleep followed the infantile experience. In conclusion, the infantile brain, by a sleep-dependent mechanism, favors consolidation of memory for the context in which episodes are experienced. These representations comprise mPFC regions and context-dependently facilitate learning in adulthood.


Assuntos
Encéfalo , Córtex Pré-Frontal , Humanos , Adulto , Ratos , Masculino , Animais , Aprendizagem em Labirinto , Memória Espacial , Hipocampo
13.
J Photochem Photobiol B ; 253: 112885, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460431

RESUMO

The daily light/dark cycle affects animals' learning, memory, and cognition. Exposure to insufficient daylight illumination negatively impacts emotion and cognition, leading to seasonal affective disorder characterized by depression, anxiety, low motivation, and cognitive impairment in diurnal animals. However, how this affects memory, learning, and cognition in nocturnal rodents is largely unknown. Here, we studied the effect of daytime light illuminance on memory, learning, cognition, and expression of mRNA levels in the hippocampus, thalamus, and cortex, the higher-order learning centers. Two experiments were performed. In experiment one, rats were exposed to 12 L:12D (12 h light and 12 h dark) with a 10, 100, or 1000 lx daytime light illuminance. After 30 days, various behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, and passive avoidance test) were performed. In experiment 2, rats since birth were raised either under constant bright light (250 lx; LL) or a daily light-dark cycle (12 L:12D). After four months, behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, passive avoidance test, Morris water maze, and Y-maze tests) were performed. At the end of experiments, rats were sampled, and mRNA expression of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (Trk), microRNA132 (miR132), Neurogranin (Ng), Growth Associated Protein 43 (Gap-43), cAMP Response Element-Binding Protein (Crebp), Glycogen synthase kinase-3ß (Gsk3ß), and Tumour necrosis factor-α (Tnf-α) were measured in the hippocampus, cortex, and thalamus of individual rats. Our results show that exposure to bright daylight (100 and 1000 lx; experiment 1) or constant light (experiment 2) compromises memory, learning, and cognition. Suppressed expression levels of these mRNA were also observed in the hypothalamus, cortex, and thalamus. These results suggest that light affects differently to different groups of animals.


Assuntos
Cognição , MicroRNAs , Ratos , Animais , Ansiedade/metabolismo , Aprendizagem em Labirinto/fisiologia , Fotoperíodo , RNA Mensageiro/genética
14.
Biomed Pharmacother ; 173: 116419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479178

RESUMO

BACKGROUND: Repetitive mild traumatic brain injury (rmTBI) can lead to somatic, emotional, and cognitive symptoms that persist for years after the initial injury. Although the ability of various treatments to promote recovery after rmTBI has been explored, the optimal time window for early intervention after rmTBI is unclear. Previous research has shown that hydrogen-rich water (HRW) can diffuse through the blood-brain - barrier, attenuate local oxidative stress, and reduce neuronal apoptosis in patients with severe traumatic brain injury. However, research on the effect of HRW on rmTBI is scarce. AIMS: The objectives of this study were to explore the following changes after rmTBI and HRW treatment: (i) temporal changes in inflammasome activation and oxidative stress-related protein expression through immunoblotting, (ii) temporal changes in neuron/myelin-related metabolite concentrations in vivo through magnetic resonance spectroscopy, (iii) myelin structural changes in late-stage rmTBI via immunofluorescence, and (iv) postinjury anxiety/depression-like behaviors and spatial learning and memory impairment. RESULTS: NLRP-3 expression in the rmTBI group was elevated at 7 and 14 DPI, and inflammasome marker levels returned to normal at 30 DPI. Oxidative stress persisted throughout the first month postinjury. HRW replacement significantly decreased Nrf2 expression in the prefrontal cortex and hippocampal CA2 region at 14 and 30 DPI, respectively. Edema and local gliosis in the hippocampus and restricted diffusion in the thalamus were observed on MR-ADC images. The tCho/tCr ratio in the rmTBI group was elevated, and the tNAA/tCr ratio was decreased at 30 DPI. Compared with the mice in the other groups, the mice in the rmTBI group spent more time exploring the open arms in the elevated plus maze (P < 0.05) and were more active in the maze (longer total distance traveled). In the sucrose preference test, the rmTBI group exhibited anhedonia. In the Morris water maze test, the latency to find the hidden platform in the rmTBI group was longer than that in the sham and HRW groups (P < 0.05). CONCLUSION: Early intervention with HRW can attenuate inflammasome assembly and reduce oxidative stress after rmTBI. These changes may restore local oligodendrocyte function, promote myelin repair, prevent axonal damage and neuronal apoptosis, and alleviate depression-like behavior and cognitive impairment.


Assuntos
Concussão Encefálica , Disfunção Cognitiva , Camundongos , Humanos , Animais , Bainha de Mielina/metabolismo , Depressão , Inflamassomos/metabolismo , Aprendizagem em Labirinto , Estresse Oxidativo , Disfunção Cognitiva/metabolismo , Inflamação/metabolismo , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças
15.
Aging (Albany NY) ; 16(5): 4348-4362, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431308

RESUMO

Diesel exhaust particles (DEPs) are major air pollutants emitted from automobile engines. Prenatal exposure to DEPs has been linked to neurodevelopmental and neurodegenerative diseases associated with aging. However, the specific mechanism by DEPs impair the hippocampal synaptic plasticity in the offspring remains unclear. Pregnant C57BL/6 mice were administered DEPs solution via the tail vein every other day for a total of 10 injections, then the male offsprings were studied to assess learning and memory by the Morris water maze. Additionally, protein expression in the hippocampus, including CPEB3, NMDAR (NR1, NR2A, NR2B), PKA, SYP, PSD95, and p-CREB was analyzed using Western blotting and immunohistochemistry. The alterations in the histomorphology of the hippocampus were observed in male offspring on postnatal day 7 following prenatal exposure to DEPs. Furthermore, 8-week-old male offspring exposed to DEPs during prenatal development exhibited impairments in the Morris water maze test, indicating deficits in learning and memory. Mechanistically, the findings from our study indicate that exposure to DEPs during pregnancy may alter the expression of CPEB3, SYP, PSD95, NMDAR (NR1, NR2A, and NR2B), PKA, and p-CREB in the hippocampus of both immature and mature male offspring. The results offer evidence for the role of the NMDAR/PKA/CREB and CPEB3 signaling pathway in mediating the learning and memory toxicity of DEPs in male offspring mice. The alterations in signaling pathways may contribute to the observed damage to synaptic structure and transmission function plasticity caused by DEPs. The findings hold potential for informing future safety assessments of DEPs.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Emissões de Veículos , Feminino , Gravidez , Humanos , Camundongos , Animais , Masculino , Emissões de Veículos/toxicidade , Aprendizagem em Labirinto , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Proteínas de Ligação a RNA/metabolismo
16.
CNS Neurosci Ther ; 30(3): e14656, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439573

RESUMO

AIMS: In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated. METHODS: Epilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects' spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test. RESULTS: Applying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre-ictal, ictal, and post-ictal periods. Meanwhile, DBS increased the post-ictal-to-pre-ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post-ictal-to-pre-ictal ratio of coherence. In addition, DBS increased the hippocampal-mPFC coupling in pre-ictal period and decreased the coupling in the ictal and post-ictal periods. CONCLUSION: Applying closed-loop, low-frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low-frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non-seizure state in subjects that received DBS.


Assuntos
Epilepsia , Pilocarpina , Humanos , Masculino , Ratos , Animais , Pilocarpina/toxicidade , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/terapia , Anticonvulsivantes , Hipocampo , Aprendizagem em Labirinto
17.
Methods Mol Biol ; 2761: 93-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427232

RESUMO

The elevated plus maze is the most widely used paradigm to evaluate anxiety-associated behavioral alterations in rodent models of central nervous system (CNS) disorders. Unconditioned aversive behavior for open and elevated areas is a measure of anxiety and can be assessed by the plus maze. Plus maze consists of perpendicularly arranged open arms and closed arms crossed in the middle with a central platform. Rodents are allowed to explore the maze between the open and closed arms. The number of entries and time spent in the open arms and the closed arms are used as indicators for the anxiety nature of the animals. Transfer latency is a memory indicator that measures the amount of time it takes to move an animal from an open arm to a closed arm. This chapter describes the pretest conditions, materials required, and protocol for the conductance and evaluating the results for the anxiety and cognition-related behavior in rodents.


Assuntos
Teste de Labirinto em Cruz Elevado , Roedores , Animais , Ansiedade , Transtornos de Ansiedade , Comportamento Animal , Aprendizagem em Labirinto/fisiologia
18.
Brain Res ; 1832: 148843, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430996

RESUMO

BACKGROUND: Chronic pain is linked to cognitive impairment; however, the underlying mechanisms remain unclear. In the present study, we examined these mechanisms in a well-established mouse model of Alzheimer's disease (AD). METHODS: Neuropathic pain was modeled in 5-month-old transgenic APPswe/PS1dE9 (APP/PS1) mice by partial ligation of the sciatic nerve on the left side, and chronic inflammatory pain was modeled in another group of APP/PS1 mice by injecting them with complete Freund's adjuvant on the plantar surface of the left hind paw. Six weeks after molding, the animals were tested to assess pain threshold (von Frey filament), learning, memory (novel object recognition, Morris water maze, Y-maze, and passive avoidance), and depression-like symptoms (sucrose preference, tail suspension, and forced swimming). After behavioral testing, mice were sacrificed and the levels of p65, amyloid-ß (residues 1-42) and phospho-tau in the hippocampus and cerebral cortex were assayed using western blotting, while interleukin (IL)-1ß levels were measured by enzyme-linked immunosorbent assay. RESULTS: Animals subjected to either type of chronic pain showed lower pain thresholds, more severe deficits in learning and memory, and stronger depression-like symptoms than the corresponding control animals. Either type of chronic pain was associated with upregulation of p65, amyloid-ß (1-42), and IL-1ß in the hippocampus and cerebral cortex, as well as higher levels of phosphorylated tau. CONCLUSIONS: Chronic pain may exacerbate cognitive deficits and depression-like symptoms in APP/PS1 mice by worsening pathology related to amyloid-ß and tau and by upregulating signaling involving IL-1ß and p65.


Assuntos
Doença de Alzheimer , Dor Crônica , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide , Peptídeos beta-Amiloides , Camundongos Transgênicos , Transtornos da Memória/etiologia , Modelos Animais de Doenças , Presenilina-1/genética , Aprendizagem em Labirinto
19.
J Toxicol Environ Health A ; 87(10): 421-427, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38551405

RESUMO

Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented ß-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.


Assuntos
Demência Vascular , Lignanas , Neuroblastoma , Compostos Policíclicos , Ratos , Humanos , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/etiologia , Demência Vascular/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipóxia , Cognição , Hipocampo , Oxigênio/farmacologia , Ciclo-Octanos
20.
Brain Struct Funct ; 229(4): 823-841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488865

RESUMO

More than 100 years since the first maze designed for rodent research, researchers now have the choice of a variety of mazes that come in many different shapes and sizes. Still old designs get modified and new designs are introduced to fit new research questions. Yet, which maze is the most optimal to use or which training paradigm should be applied, remains up for debate. In this review, we not only provide a historical overview of maze designs and usages in rodent learning and memory research, but also discuss the possible navigational strategies the animals can use to solve each maze. Furthermore, we summarize the different phases of learning that take place when a maze is used as the experimental task. At last, we delve into how training and maze design can affect what the rodents are actually learning in a spatial task.


Assuntos
Memória , Roedores , Animais , Aprendizagem em Labirinto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...